
Several variables dictate the type of transfer you use, including the amount and type of welding current, the electrode chemistry, electrode surface, electrode diameter, shielding gas, and the contact tip-to-work distance. Transfer mode also affects your choice of filler metal used.
Which mode is right for you? Choosing wisely can greatly affect your efficiencies and productivity.
Short-circuit Transfer
In short-circuit transfer, the electrode touches the work and short circuits, causing the metal to transfer as a result of the short. This happens at a rate of 20 to more than 200 times per second.
The advantage of the short-circuit transfer is its low energy. This method is normally used on thin material ¼ inch or less, and for root passes on pipe with no backing. It can be used to weld in all positions.

The most predominant solid stainless steel electrodes are ER308L, ER309L, and ER316L. These electrodes are also available in the Si type, such as 308LSi. The LSi types contain more silicon, which increases puddle fluidity and helps the weld puddle to wet out better than the standard alloys. While minor power source adjustments may be needed, both types can be used successfully as long as the specification for the welding consumables permits.

Maintaining a constant contact tip-to-work distance in short-circuit transfer is important to maintain a smooth transfer.
The most common shielding gas for the short-circuit transfer mode for carbon steel electrodes is 75 percent argon/25 percent CO2. Numerous three-part shielding gas mixes are also available for carbon steel and stainless steel for this mode of transfer.